108 research outputs found

    Manage risk of accidental gene editing of germline

    Get PDF
    No abstract available

    Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA)

    Get PDF
    Myotonic dystrophy type 1 (DM1) is not characterised by ataxia per se; however, DM1 and ataxia patients show similar disturbances in movement coordination often experiencing walking and balance difficulties, although caused by different underlying pathologies. This study aims to investigate the use of a scale previously described for the assessment and rating of ataxia (SARA) with the hypothesis that it could have utility in DM1 patients as a measure of disease severity and risk of falling. Data from 54 DM1 patients were pulled from the PHENO-DM1 natural history study for analysis. Mean SARA score in the DM1 population was 5.45 relative to the maximum score of eight. A flooring effect (score 0) was observed in mild cases within the sample. Inter-rater and test–retest reliability was high with intraclass coefficients (ICC) of 0.983 and 1.00, respectively. Internal consistency was acceptable as indicated by a Cronbach’s alpha of 0.761. Component analysis revealed two principle components. SARA correlated with: (1) all measures of muscle function tested, including quantitative muscle testing of ankle dorsiflexion (r = −0.584*), the 6 min walk test (r = −0.739*), 10 m walk test (r = 0.741*), and the nine hole peg test (r = 0.602*) and (2) measures of disease severity/burden, such as MIRS (r = 0.718*), MDHI (r = 0.483*), and DM1-Activ (r = −0.749*) (*p < 0.001). The SARA score was predicted by an interaction between modal CTG repeat length and age at sampling (r = 0.678, p = 0.003). A score of eight or above predicted the use of a walking aid with a sensitivity of 100% and a specificity of 85.7%. We suggest that further research is warranted to ascertain whether SARA or components of SARA are useful outcome measures for clinical trials in DM1. As a tool, it can be used for gathering information about disease severity/burden and helping to identify patients in need of a walking aid, and can potentially be applied in both research and healthcare settings

    Chronic exposure to cadmium and antioxidants does not affect the dynamics of expanded CAG‱CTG trinucleotide repeats in a mouse cell culture system of unstable DNA

    Get PDF
    More than 30 human disorders are caused by the expansion of simple sequence DNA repeats, among which triplet repeats remain the most frequent. Most trinucleotide repeat expansion disorders affect primarily the nervous system, through mechanisms of neurodysfunction and/or neurodegeneration. While trinucleotide repeat tracts are short and stably transmitted in unaffected individuals, disease-associated expansions are highly dynamic in the germline and in somatic cells, with a tendency towards further expansion. Since longer repeats are associated with increasing disease severity and earlier onset of symptoms, intergenerational repeat size gains account for the phenomenon of anticipation. In turn, higher levels of age-dependent somatic expansion have been linked with increased disease severity and earlier age of onset, implicating somatic instability in the onset and progression of disease symptoms. Hence, tackling the root cause of symptoms through the control of repeat dynamics may provide therapeutic modulation of clinical manifestations. DNA repair pathways have been firmly implicated in the molecular mechanism of repeat length mutation. The demonstration that repeat expansion depends on functional DNA mismatch repair (MMR) proteins, points to MMR as a potential therapeutic target. Similarly, a role of DNA base excision repair (BER) in repeat expansion has also been suggested, particularly during the removal of oxidative lesions. Using a well-characterized mouse cell model system of an unstable CAG‱CTG trinucleotide repeat, we tested if expanded repeat tracts can be stabilized by small molecules with reported roles in both pathways: cadmium (an inhibitor of MMR activity) and a variety of antioxidants (capable of neutralizing oxidative species). We found that chronic exposure to sublethal doses of cadmium and antioxidants did not result in significant reduction of the rate of trinucleotide repeat expansion. Surprisingly, manganese yielded a significant stabilization of the triplet repeat tract. We conclude that treatment with cadmium and antioxidants, at doses that do not interfere with cell survival and cell culture dynamics, is not sufficient to modify trinucleotide repeat dynamics in cell culture

    In search of Robert Bruce, part I: craniofacial analysis of the skull excavated at Dunfermline in 1819

    Get PDF
    Robert Bruce, king of Scots, is a significant figure in Scottish history, and his facial appearance will have been key to his status, power and resilience as a leader. This paper is the first in a series that discusses the burial and skeletal remains excavated at Dunfermline in 1819. Parts II and III discuss the evidence relating to whether or not the burial vault and skeleton belong to Robert Bruce, and Part I analyses and interprets the historical records and skeletal structure in order to produce a depiction of the facial appearance of Robert Bruce

    Allele length of the DMPK CTG repeat is a predictor of progressive myotonic dystrophy type 1 phenotypes

    Get PDF
    Myotonic dystrophy type 1 (DM1) is an autosomal dominant inherited disorder caused by expansion of a germline and somatically unstable CTG repeat in the DMPK gene. Previously, CTG repeat length at birth has been correlated to patient age at symptom onset. Attempts to correlate CTG repeat length with progressive DM1 phenotypes, such as muscle power, have proven difficult. To better correlate genotype with progressive phenotypes, we have measured CTG repeat tract length and screened for interrupting variant repeats in 192 study participants from a well-characterized Canadian cohort. We have assessed genotype–phenotype correlations with nine progressive measures of skeletal muscle power and respiratory function. We have built statistical models that include confounding factors such as sex, age, height and weight to further explain variation in muscle power. Our analysis reveals a strong correlation between DM1 genotype and respiratory function and skeletal muscle power, as part of a complex model that includes additional modulators such as sex, age, height, weight and the presence or absence of interrupting variant repeats. Distal skeletal muscle measurements, such as hand pinch and grip strength, show the strongest correlation with disease genotype. Detailed analysis of CTG repeat length, and incorporation of confounding factors, greatly improves the predictive ability of these models. They reveal a greater genetic influence on individual progressive phenotypes than on age at symptom onset and for clinical trials will help optimize stratification and explain patient variability. They will also help practitioners prioritize assessment of the muscular power measurements that correlate best with disease severity

    gene DNA methylation levels are associated with muscular and respiratory profiles in DM1

    Get PDF
    Objective: To assess the effects of dystrophia myotonica protein kinase (DMPK) DNA methylation (DNAme) epivariation on muscular and respiratory profiles in patients with myotonic dystrophy type 1 (DM1). Methods: Phenotypes were assessed with standardized measures. Pyrosequencing of bisulfite-treated DNA was used to quantify DNAme levels in blood from 90 patients with DM1 (adult form). Modal CTG repeat length was assessed using small-pool PCR. The presence of Acil-sensitive variant repeats was also tested. Results: DNAme levels upstream of the CTG expansion (exon and intron 11) were correlated with modal CTG repeat length (rs = −0.224, p = 0.040; rs = −0.317, p = 0.003; and rs = −0.241, p = 0.027), whereas correlations were observed with epivariations downstream of the CTG repeats (rs = 0.227; p = 0.037). The presence of a variant repeat was associated with higher DNAme levels at multiple CpG sites (up to 10% higher; p = 0.001). Stepwise multiple linear regression modeling showed that DNAme contributed significantly and independently to explain phenotypic variability in ankle dorsiflexor (3 CpGs: p = 0.001, 0.013, and 0.001), grip (p = 0.089), and pinch (p = 0.028) strengths and in forced vital capacity (2 CpGs: p = 0.002 and 0.021) and maximal inspiratory pressure (p = 0.012). Conclusions: In addition to the CTG repeat length, DMPK epivariations independently explain phenotypic variability in DM1 and could thus improve prognostic accuracy for patients

    Disease burden of myotonic dystrophy type 1

    Get PDF
    Objective: The objective of this cross-sectional, observational study was to investigate the disease burden of myotonic dystrophy type 1 (DM1), a disabling muscle disorder. Methods: Adults with DM1 were recruited as part of the PhenoDM1 study from Newcastle University (Newcastle upon Tyne, UK). Disease burden data were recorded through the Individualized Neuromuscular Quality of Life (INQoL) questionnaire. Results were examined by sex and clinical variables [e.g. the six-minute walk test (6MWT), the Mini Mental State Examination, and estimated progenitor and modal allele CTG repeat length]. Results: Our sample consisted of 60 patients with DM1 (mean age: 45 years; 45% female). Muscle weakness and fatigue constituted the two most common disease manifestations, reported by 93% and 90% of patients, respectively, followed by muscle locking (73%). Most patients (> 55%) reported feeling anxious/worried, depressed, frustrated, and/or having low confidence/self-esteem, 23% and 33% indicated substantial impairment of daily and leisure activities, respectively, and 47% did not work as a consequence of the disease. Estimated progenitor CTG length corrected by age correlated surprisingly well with INQoL scores. Differences by sex were generally minor. Conclusion: We show that DM1 is associated with a substantial disease burden resulting in impairment across many different domains of patients’ lives, emphasizing the need for a holistic approach to medical management. Our results also show that the INQoL records relevant information about patients with DM1, but that further investigation of the psychometric properties of the scale is needed for meaningful interpretation of instrument scores

    CRISPR/Cas9-induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing

    Get PDF
    Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5â€Č or 3â€Č unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1

    Increased SK3 expression in DM1 lens cells leads to impaired growth through a greater calcium-induced fragility

    Get PDF
    Although cataract is a characteristic feature of myotonic dystrophy type 1 (DM1), little is known of the underlying mechanisms. We generated four lens epithelial cell lines derived from DM1 cataracts and two from age-matched, non-DM cataracts. Small-pool PCR revealed typical large triplet repeat expansions in the DM1 cells. Furthermore, real-time PCR analysis showed reduced SIX5 expression and increased expression of the Ca2+-activated K+ channel SK3 in the DM1 cells. These cells also exhibited longer population doubling times which did not arise through reduced proliferation, but rather increased cell death as shown by increased release of lactate dehydrogenase (LDH). Using 86Rb+ as a tracer for K+, we found no difference in the resting K+ influx or efflux kinetics. In all cases, the ouabain sensitive component of the influx contributed ~50% of the total. However, stimulating internal Ca2+ by exposure to ionomycin not only caused greater stimulation of K+ (86Rb) efflux in the DM1 cells but also induced a higher rate of cell death (LDH assay). Since both the hyper-stimulation of K+ efflux and cell death were reduced by the highly specific SK inhibitor apamin, we suggest that increased expression of SK3 has a critical role in the increased Ca2+-induced fragility in DM1 cells. The present data, therefore, both help explain the lower epithelial cell density previously observed in DM1 cataracts and provide general insights into mechanisms underlying the fragility of other DM1-affected tissues
    • 

    corecore